节点文献

High resolution facies architecture and digital outcrop modeling of the Sandakan formation sandstone reservoir, Borneo:Implications for reservoir characterization and flow simulation

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 Numair A.SiddiquiMu.RamkumarAbdul Hadi A.RahmanManoj J.MathewM.SantoshChow W.SumDavid Menier

【Author】 Numair A.Siddiqui;Mu.Ramkumar;Abdul Hadi A.Rahman;Manoj J.Mathew;M.Santosh;Chow W.Sum;David Menier;Department of Petroleum Geosciences, Universiti Teknologi PETRONAS;Department of Geology, Periyar University;Institute of Oceanography and Environment,Universiti Malaysia Terengganu;Department of Earth Sciences, University of Adelaide;School of Earth Sciences and Resources, China University of Geosciences Beijing;Laboratoire Géosciences Océan,UMR CNRS 6538,Campus de Tohannic;

【通讯作者】 Numair A.Siddiqui;

【机构】 Department of Petroleum Geosciences, Universiti Teknologi PETRONASDepartment of Geology, Periyar UniversityInstitute of Oceanography and Environment,Universiti Malaysia TerengganuDepartment of Earth Sciences, University of AdelaideSchool of Earth Sciences and Resources, China University of Geosciences BeijingLaboratoire Géosciences Océan,UMR CNRS 6538,Campus de Tohannic

【摘要】 Advances in photogrammetry have eased the acquisition of high-resolution digital information from outcrops, enabling faster, non-destructive data capturing and improved reservoir modeling. Geocellular models for flow dynamics with in the virtual outcrop in siliciclastic deposits at different sets of sandstone facies architecture remain, however, a challenge. Digital maps of bedding, lithological contrast, spatial-temporal variations of bedding and permeability characteristics make it more easy to understand flow tortuosity in a particular architecture. An ability to precisely model these properties can improve reservoir characterization and flow modeling at different scales. Here we demonstrate the construction of realistic 2 D sandstone facies based models for a pragmatic simulation of flow dynamics using a combination of digital point clouds dataset acquired from LiDAR and field investigation of the Sandakan Formation, Sabah, Borneo.Additionally, we present methods for enhancing the accuracy of outcrop digital datasets for producing high resolution flow simulation. A well-exposed outcrop from the Sandakan Formation, Sabah, northwest Borneo having a lateral extent of 750 m was chosen in order to implement our research approach. Sandstone facies and its connectivity are well constrained by outcrop observations, data from air-permeability measurements, bilinear interpolation of permeability, grid construction and water vector analysis for flow dynamics.These proportions were then enumerated in terms of static digital outcrop model(DOM) and facies model based on sandstone facies bedding characteristics. Flow simulation of water vector analysis through each of the four sandstone facies types show persistent spatial correlation of permeability that align with either cross-bedded orientation or straight with more dispersion high quality sandstone(porosity 21.25%-41.2%and permeability 1265.20-5986.25 mD) and moderate quality sandstone(porosity 10.44%-28.75% and permeability 21.44-1023.33 mD). Whereas, in more heterolithic sandstone(wavy-to flaser-bedded and bioturbated sandstone), lateral variations in permeability show spatially non-correlated patterns over centimeters to tens of meters with mostly of low quality sandstone(porosity 3.4%-12.31% and permeability < 1 mD to 3.21 mD). These variations reflect the lateral juxtaposition in flow dynamics. It has also been resulted that the vertical connectivity and heterogeneities in terms of flow are mostly pragmatic due to the interconnected sandstone rather than the quality of sandstone.

【Abstract】 Advances in photogrammetry have eased the acquisition of high-resolution digital information from outcrops, enabling faster, non-destructive data capturing and improved reservoir modeling. Geocellular models for flow dynamics with in the virtual outcrop in siliciclastic deposits at different sets of sandstone facies architecture remain, however, a challenge. Digital maps of bedding, lithological contrast, spatial-temporal variations of bedding and permeability characteristics make it more easy to understand flow tortuosity in a particular architecture. An ability to precisely model these properties can improve reservoir characterization and flow modeling at different scales. Here we demonstrate the construction of realistic 2 D sandstone facies based models for a pragmatic simulation of flow dynamics using a combination of digital point clouds dataset acquired from LiDAR and field investigation of the Sandakan Formation, Sabah, Borneo.Additionally, we present methods for enhancing the accuracy of outcrop digital datasets for producing high resolution flow simulation. A well-exposed outcrop from the Sandakan Formation, Sabah, northwest Borneo having a lateral extent of 750 m was chosen in order to implement our research approach. Sandstone facies and its connectivity are well constrained by outcrop observations, data from air-permeability measurements, bilinear interpolation of permeability, grid construction and water vector analysis for flow dynamics.These proportions were then enumerated in terms of static digital outcrop model(DOM) and facies model based on sandstone facies bedding characteristics. Flow simulation of water vector analysis through each of the four sandstone facies types show persistent spatial correlation of permeability that align with either cross-bedded orientation or straight with more dispersion high quality sandstone(porosity 21.25%-41.2%and permeability 1265.20-5986.25 mD) and moderate quality sandstone(porosity 10.44%-28.75% and permeability 21.44-1023.33 mD). Whereas, in more heterolithic sandstone(wavy-to flaser-bedded and bioturbated sandstone), lateral variations in permeability show spatially non-correlated patterns over centimeters to tens of meters with mostly of low quality sandstone(porosity 3.4%-12.31% and permeability < 1 mD to 3.21 mD). These variations reflect the lateral juxtaposition in flow dynamics. It has also been resulted that the vertical connectivity and heterogeneities in terms of flow are mostly pragmatic due to the interconnected sandstone rather than the quality of sandstone.

【基金】 Institute of Hydrocarbon Recovery, Universiti Teknology PETRONAS and Petroliam Nasional Berhad, Malaysia Oil and Gas Company for funding this research project (YUTP cost # 0153AA-E79)
  • 【文献出处】 Geoscience Frontiers ,地学前缘(英文版) , 编辑部邮箱 ,2019年03期
  • 【分类号】P618.13
  • 【被引频次】1
  • 【下载频次】11
节点文献中: 

本文链接的文献网络图示:

本文的引文网络