节点文献
卫星大角度机动姿态控制模块的硬件设计与验证
Satellite Wide-Angle Attitude Control Motor Module Hardware Design and Verification
【作者】 张延清;
【导师】 田浩;
【作者基本信息】 哈尔滨工业大学 , 人机与环境工程, 2009, 硕士
【摘要】 微小卫星是目前航天器发展的一个重要方向,作为现代微小卫星技术的关键部分,姿态控制系统起到至关重要的作用。在现代微小卫星系统中,姿态控制系统从传统的以通用处理器为基础的软件实现方式发展到以专用集成电路ASIC为代表的硬件实现方式,但目前存在性能和设计周期方面的矛盾,以FPGA为代表的可重构计算技术填补了两者之间的空白,系统可以根据目标算法的不同,动态调整硬件,具有更好的灵活性和适应性。本文设计以哈工大卫星所的时变计算机项目为背景,依据可重构计算技术对姿态控制系统中的一个控制模式——大角度机动控制模式进行硬件设计并进行仿真验证。首先,分析卫星大角度机动姿态控制算法,根据算法数据运算的过程划分硬件设计的整体结构。通过分析设计平台的优势与不足,确定了本设计采用的设计流程。其次,根据硬件设计的整体结构需要,确定设计的数据格式和算法的子模块。子模块包括浮点加法器、浮点乘法器、浮点除法器和三角函数器。设计中对子模块给出了详细的模块说明和结构图。再次,对设计完的算法子模块和算法整体模块进行仿真和验证。对子模块主要从功能和时序上进行了验证,并详细分析说明。对整体模块采用了ModelSim与Simulink的软硬件协同仿真,仿真结果在40S内基本稳定,满足大角度机动控制性能的指标要求。最后,用半实物仿真平台代替星载设备,为了能将基于FPGA的大角度机动控制算法接入平台与姿态控制系统进行实时闭环仿真,设计了串-并数据转换器UART,并将整体算法和UART写入FPGA。片内共占用1668个ALUT,1003个reg,16个DSP模块。在QuartusII上综合后的最大延迟是101.995ns,理论上的最小频率是9.8MHz。并将FPGA接入单轴台进行半实物仿真,仿真结果基本与数学仿真一致。通过本文的研究,验证了姿态控制算法硬件设计在小卫星上实际应用的可行性,为后续完成更为复杂的算法提供技术基础。
【Abstract】 Micro-satellite spacecraft is an important direction of development. As a key part of modern small satellites, attitude control system is all the more important. Attitude control system from the traditional general-purpose processor-based implementation of software to ASIC to represent the hardware implementation is difficult to balance the design cycle and performance. Represent in FPGA reconfigurable computing technology to fill the gap between the two. Meanwhile, the system will adjust its hardware dynamically according to the algorithm’s difference. So it has better flexibility and adaptability. In this paper, HIT satellites designed to time-varying background of the computer project. Reconfigurable computing technology based on the attitude control system, a control mode-wide-angle model of motor control hardware design and simulation.First of all, the analysis of satellite large angle attitude maneuver control algorithm. Give the design platform and an analysis of the shortcomings of the platform. Determine the design of the design process.Secondly, determine the data format and algorithm module according to the hardware design-flow-chart. Sub-modules including the floating-point adder, floating-point multiplier, floating-point divider, trigonometric function device. Give a detailed description and structure of modules.Thirdly, simulate and verify the overall module and the sub-modules. Module pair from the functional and timing verification was carried out and detailed analysis. Module on the overall used the Modelsim and Simulink software and hardware co-simulation. Simulation results is stable within 40S, meeting the wide-angle model of motor control performance indicators.Finally, use the Semi-physical simulation platform instead of on-board equipment. For Attitude control system with real-time closed-loop simulation, the large angle attitude maneuver control algorithm access in the platform. Design the Serial-Parallel the data converter UART. Then write into FPGA within the overall algorithm. Totally, the design occupies 1668 ALUT, 1003 registers and 16 DSP modules with a maximum operating frequency of 9.8MHz. The simulation results are consistent with the mathematical simulation. Through the study of this paper, verify a hardware design of attitude control algorithm in the practical application of small satellites on the feasibility. For the future completion of more complex algorithms and application on satellite lay the foundation.
【Key words】 FPGA; Semi-physical simulation; software and hardware co-simulation;
- 【网络出版投稿人】 哈尔滨工业大学 【网络出版年期】2011年 S1期
- 【分类号】V448.12
- 【下载频次】104