节点文献

基于子图演化与改进蚁群优化算法的社交网络链路预测方法

Social network link prediction method based on subgraph evolution and improved ant colony optimization algorithm

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 顾秋阳琚春华吴功兴

【Author】 GU Qiuyang;JU Chunhua;WU Gongxing;School of Management, Zhejiang University of Technology;China Institute for Small and Medium Enterprises, Zhejiang University of Technology;Business School, University of Nottingham Ningbo;School of Management Science & Engineering, Zhejiang Gongshang University;

【机构】 浙江工业大学管理学院浙江工业大学中国中小企业研究院宁波诺丁汉大学商学院浙江工商大学管理工程与电子商务学院

【摘要】 基于改进蚁群优化算法与子图演化,提出了一种新型非监督社交网络链路预测(SE-ACO)方法。该方法首先在社交网络图中确定特殊子图;然后研究子图演化以预测图中的新链接,并用蚁群优化算法定位特殊子图;最后针对所提方法使用不同网络拓扑环境与数据集进行检验。结果表明,与其他无监督社交网络预测算法相比,所提SE-ACO方法在多数数据集上的评估结果较好,且运行时间较短,这表明图形结构在链路预测算法中起重要作用。

【Abstract】 Based on improved ant colony algorithm and subgraph evolution fusion, a new unsupervised social network link prediction method(SE-ACO) was proposed. First, the special subgraph was determined in the social network graph. Then the evolution of the subgraph was studied to predict the new links in the graph, and the special subgraph was located by the ant colony method. Finally, using different network topology environments and data sets to test the proposed method. Compared with other unsupervised social network prediction algorithms, the proposed SE-ACO method has the best evaluation results, shorter running time and the best effect on most data sets, which indicates that graph structure plays an important role in link prediction algorithm.

【基金】 国家自然科学基金资助项目(No.71571162);浙江省社科规划重点课题基金资助项目(No.20NDJC10Z);浙江省自然科学基金资助项目(No.LQ20G010002)~~
  • 【文献出处】 通信学报 ,Journal on Communications , 编辑部邮箱 ,2020年12期
  • 【分类号】TP18;O157.5
  • 【网络出版时间】2020-12-23 09:18
  • 【被引频次】3
  • 【下载频次】309
节点文献中: