节点文献

肺结节的自适应检测算法

Adaptive Detection Algorithm for Pulmonary Nodules

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 郭薇魏颖周翰逊薛定宇

【Author】 GUO Wei, WEI Ying, ZHOU Han-xun, XUE Ding-Yu (School of Information Science and Engineering, Northeastern University, Shenyang 110004, China)

【机构】 东北大学信息科学与工程学院

【摘要】 提出一种自适应的肺结节检测算法。基于肺结节的CT图像表现,提取了七个图像特征。对于每个特征,采用支持向量机(SVM)进行单特征分类,将其分类的准确率作为权值应用到改进的Mahalanobis距离公式中。根据改进的Mahalanobis距离公式构造非线性分类器,然后对感兴趣区域(ROI)进行分类,分类器中使用自适应的算法自动调节阈值。实验结果表明,该算法对于肺结节的检测具有较高的敏感性和准确性。

【Abstract】 An adaptive detection algorithm for pulmonary nodules was proposed. Based on CT images of pulmonary nodules, seven image features were extracted. Then Support Vector Machine (SVM) algorithm was applied to each feature vector to classify the pulmonary nodules, and the accuracy of each feature classification was used as a weight in the modified Mahalanobis distance formula. A nonlinear classifier, which classified the regions of interest (ROI), was constructed on the base of modified Mahalanobis distance formula. The adaptive algorithm was used to adjust the threshold in the classifier. The experiment indicates that the algorithm has a good sensitivity and accuracy for pulmonary nodule detection.

【基金】 国家自然科学基金(60671050);辽宁省自然科学基金(20052021)
  • 【文献出处】 系统仿真学报 ,Journal of System Simulation , 编辑部邮箱 ,2009年13期
  • 【分类号】R734.2;TP391.41
  • 【被引频次】4
  • 【下载频次】155
节点文献中: