节点文献

基于人工鱼群优化Apriori算法的配电网故障诊断

Distribution network fault diagnosis based on artificial fish swarm improved Apriori algorithm

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 李昊轩袁满江崔铭郝云飞郭磊孙羽来孙志强朱震李迎旭乔立龙张东

【Author】 LI Haoxuan;YUAN Manjiang;CUI Ming;HAO Yunfei;GUO Lei;SUN Yulai;SUN Zhiqiang;ZHU Zhen;LI Yingxu;QIAO Lilong;ZHANG Dong;School of Electric Power, Shenyang Institute of Engineering;Shenyang Aircraft Industry(Group) Co., Ltd.;State Grid Liaoning Electric Power Co., Ltd.Yingkou Power Supply Company;Dalian Changxing Island Secondary Vocational and Technical School;

【通讯作者】 张东;

【机构】 沈阳工程学院电力学院沈阳飞机工业(集团)有限公司国网辽宁省电力有限公司营口供电公司大连长兴岛中等职业技术学校

【摘要】 在解决电网配网运行过程产生的故障诊断问题时,需要考虑到当前大电网运行过程中产生数据库的规模大、维度高、模态多样及类型复杂等特点,而故障诊断中应用传统关联规则挖掘算法已无法适应处理大数据库数据量的实际需求。与此同时,以人工鱼群算法为代表的新兴智能算法在实际社会生产中得到了广泛的应用,因而提出一种基于人工鱼群算法改进Apriori数据挖掘算法的配电网故障诊断方法,构建出一种新型的改进Apriori算法模型。结合某一实际配网运行产生的数据,通过矩阵实验室(matrix laboratory, MATLAB)仿真软件进行仿真验证所提到的新型算法,并与传统数据挖掘算法进行比较。实验结果表明,改进后算法的准确率较高,响应速度快,更适用于对大规模数据库的处理。

【Abstract】 When solving the problem of fault diagnosis during the operation of power distribution network, need to consider the characteristics of large-scale, high dimension, diverse modes and complex types of databases generated in the current large-scale power grid operation process, the application of traditional association rule mining algorithm in fault diagnosis has been unable to meet the actual needs of processing large database data. At the same time, the emerging intelligent algorithm represented by the artificial fish swarm algorithm has been widely used in the actual social production. Therefore, in this paper we propose a distribution network fault diagnosis method based on the improved Apriori data mining algorithm of the artificial fish swarm algorithm, construct a new improved Apriori algorithm model, and combine the data generated by an actual distribution network operation to verify the new algorithm through matrix laboratory(MATLAB) simulation software. Compared with the traditional data mining algorithm, the experimental results show that the improved algorithm has higher accuracy, faster response speed, and is more suitable for large-scale database processing.

【基金】 辽宁省科技厅创新能力提升基金资助项目(2022-NL-TS-16-01,2022-NL-TS-16-03);沈阳市科技局中青年科技创新人才支持计划(RC210143)
  • 【文献出处】 沈阳师范大学学报(自然科学版) ,Journal of Shenyang Normal University(Natural Science Edition) , 编辑部邮箱 ,2023年04期
  • 【分类号】TM73;TP18
  • 【下载频次】5
节点文献中: