节点文献
S-拟正规子群对有限群结构的影响
The Influence of S-quasinormal Subgroups on the Structure of Finite Groups
【摘要】 设G为有限群,称G的子群H在G中S-拟正规,如果H和G的每个Sylow子群相乘可换.利用子群的S-拟正规性给出了有限群成为幂零群或超可解群的一些充分条件,并得到了有限群G的2-极大子群在G中S-拟正规时G的一个完全分类定理.
【Abstract】 Let G be a finite group.A subgroup H of a group G is said to be S-quasinormal in G if H permutes with every Sylow subgroup of G.In this paper,in terms of S-quasinormal subgroups,some sufficient conditions for a finite group to be supersolvable or nilpotent are obtained.Under the condition that 2-maximal subgroup of G is S-quasinormal in G,a complete classification of G is obtained.
【关键词】 S-拟正规子群;
幂零群;
超可解群;
【Key words】 S-quasinormal subgroup; Finite nilpotent group; Finite supersolvable group;
【Key words】 S-quasinormal subgroup; Finite nilpotent group; Finite supersolvable group;
【基金】 四川省学术委员会基金(SZD0406)资助项目
- 【文献出处】 四川师范大学学报(自然科学版) ,Journal of Sichuan Normal University(Natural Science) , 编辑部邮箱 ,2009年01期
- 【分类号】O152.1
- 【被引频次】21
- 【下载频次】206