节点文献

改进的基于卷积神经网络的人数估计方法

Improved Method for Estimating Number of People Based on Convolution Neural Network

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 张红颖王赛男胡文博

【Author】 Zhang Hongying;Wang Sainan;Hu Wenbo;College of Electronic Information and Automation,Civil Aviation University of China;

【通讯作者】 张红颖;

【机构】 中国民航大学电子信息与自动化学院

【摘要】 估算监控场景中的人数是安防监控的重要任务之一,当人群密集、行人之间存在遮挡时,人数估计较困难。因此,针对密集场景下的人数估计问题,提出了一种改进的基于卷积神经网络的人数估计方法。为了改善摄像透视畸变带来的影响,分别利用深层网络和浅层网络提取人群特征,深层和浅层网络分别设计了不同核大小的卷积层,并将提取到的特征通过一个具备多尺度提取能力的结构进行融合。实验结果表明,改进后的网络模型所获取的人群密度图更加贴近原场景信息,人数估计结果也更加精确。

【Abstract】 Estimating the number of people in the surveillance scene is one of the important tasks of security monitoring.However it is difficult to estimate the number when the crowd is with clutter and severe occlusion.An improved crowd counting method based on the convolution neural network is proposed as for the number estimation under dense scenes.In order to reduce the effect of camera perspective distortion,the deep network and shallow network are used to extract the crowd characteristics,respectively.The convolution layers with different kernel sizes are also designed.Moreover,the extracted features are fused through a special structure with multi-scale extraction capability.The experimental results show that the crowd density map obtained by the improved network model is closer to the original scene information and the obtained prediction results are more precise.

【基金】 国家自然科学基金民航联合研究基金重点项目(U1533203);中央高校基本科研业务费项目中国民航大学专项资助(3122017005,3122018C004)
  • 【文献出处】 激光与光电子学进展 ,Laser & Optoelectronics Progress , 编辑部邮箱 ,2018年12期
  • 【分类号】TP391.41;TP183
  • 【网络出版时间】2018-07-06 16:29
  • 【被引频次】7
  • 【下载频次】200
节点文献中: