节点文献

基于SSA-LSTM网络模型的锂离子电池健康状态预测

State-of-health prediction of lithium-ion batteries based on SSA-LSTM network model

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 俞寅森朱涛位承君叶杨倩廖强强付在国

【Author】 YU Yinsen;ZHU Tao;WEI Chengjun;YE Yangqian;LIAO Qiangqiang;FU Zaiguo;School of Environmental and Chemical Engineering, Shanghai University of Electric Power;Xi′an Thermal Power Research Institute Co., Ltd.;

【通讯作者】 廖强强;

【机构】 上海电力大学环境与化学工程学院西安热工研究院有限公司

【摘要】 锂离子电池被广泛用作各种设备的电源,因此对锂离子电池SOH(健康状态)的快速准确预测是降低电池故障的重要手段。由于LSTM(长短期记忆)网络可以从时间序列中找出变量变化的特征、趋势以及发展规律,进而对变量的未来变化进行有效地预测,因此已成为预测锂离子电池SOH的一种流行的深度学习网络方法。未优化超参数的LSTM方法很容易导致电池SOH预测模型的精度低。针对锂离子电池SOH预测问题,提出一种基于SSA(麻雀搜索算法)优化LSTM的方法。提取一种新的健康指标-充电电压PDF(概率密度函数)曲线峰值处的峰度,并将其用作SOH预测模型的输入,以实现对电池SOH的准确预测。实验结果表明,SSA优化的LSTM模型的预测精度优于未优化模式。当训练集仅占总数据的20%时,NCA(镍钴铝)电池SOH预测结果的均方根误差ERMSE在0.7%以内,最大绝对误差<2.0%。SSA-LSTM可以在训练数据有限的情况下准确预测电池SOH

【Abstract】 Lithium-ion batteries are widely used as power sources for various devices, so rapid and accurate prediction of the SOH(state of health) of lithium-ion batteries is an important means to reduce battery failures. Due to its ability to identify the characteristics, trends and development patterns of variable changes from time series, LSTM(long short-term memory) network is a popular deep learning network method for predicting the future changes of lithium-ion battery SOH. The LSTM method without optimizing hyperparameters can easily lead to low accuracy in battery SOH prediction models. A method based on SSA(sparrow search algorithm) was proposed to optimize LSTM for the prediction of SOH in lithium-ion batteries. A new health indicator-the kurtosis at the peak of the charging voltage PDF(probability density function) curve was extracted and used as input for the SOH prediction model to achieve accurate prediction of battery SOH. The experimental results show that the prediction accuracy of the LSTM model optimized by SSA is better than that of the unoptimized model. When the training set only accounts for 20% of the total data, the root mean square error ERMSE of the NCA(nickel cobalt aluminum) battery SOH prediction results is within 0.7%, and the maximum absolute error is less than 2.0%. SSA-LSTM can accurately predict battery SOH under limited training data.

【基金】 上海市科委项目(19DZ2271100)
  • 【文献出处】 化学工程 ,Chemical Engineering(China) , 编辑部邮箱 ,2024年12期
  • 【分类号】TM912;TP18
  • 【下载频次】63
节点文献中: