节点文献

电池排布方式对21700锂电池相变热管理系统的影响

Influence of Different Arrangement on Phase Change Thermal Management System of 21700 Lithium Battery

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 郭茶秀魏金宇

【Author】 GUO Chaxiu;WEI Jinyu;School of Mechanical and Power Engineering, Zhengzhou University;

【机构】 郑州大学机械与动力工程学院

【摘要】 以21700锂离子电池组为研究对象,对不同排布方式下的锂电池分别控制电池间距、对流换热系数和相变材料(PCM)导热率,并对其进行有限元仿真。研究了电池间距、对流换热系数和PCM导热率对相变电池热管理系统(BTMS)下不同排布方式(长方形、四边形、六边形)的电池组温度场的影响。结果表明:当电池间距为4 mm和6 mm时,3者具有近似的最高温度,而当电池间距为2 mm和1 mm时,长方形排布的电池组最高温度最大,在2 mm时长方形排布的电池组最大温升分别为四边形排布下和六边形排布下的电池组的105.86%和108.25%,而3者的温差均随间距增大,总体呈现出变小的趋势;在不同的对流换热系数下,长方形排布的电池组最高温度总是最大而四边形最小,随着对流换热系数的增大,3者温差呈现出变大的趋势;随着PCM导热系数的增大,3者的最高温度均不断下降且下降速率越来越小,在5种不同PCM导热系数下,长方形排布的电池组最大温升平均是四边形排布和六边形排布电池组的105.31%和106.02%,3者的潜热储热阶段的温差均有减小,显热阶段对长方形和六边形的温差没有影响,四边形的温差却不断增大。综合考虑最高温度和温差,采用六边形排布的锂电池组在PCM热管理下的热性能最佳。

【Abstract】 Taking 21700 lithium ion battery pack as the research object, the finite element simulation was carried out by controlling the changes of battery spacing, convective heat transfer coefficient, and phase change material(PCM) thermal conductivity of lithium battery with different arrangement. The effects of cell spacing, convective heat transfer coefficient and PCM thermal conductivity on the temperature field of different battery arrays Rectangular, Quadrilateral, and Hexagonal Arrangement with phase change BTMS were studied. The results showed that when the battery spacing was 4 mm and 6 mm, the three had approximate maximum temperature, and when the battery spacing was 2 mm and 1 mm, the maximum temperature of the Rectangular Arrangement was the largest, for example, the maximum temperature rise of the Rectangular Arrangement was 105.86% and 108.25% of the Quadrilateral Arrangement and Hexagonal Arrangement, respectively. However, the temperature differences of the three components tended to decrease with the increase of the spacing. With different convective heat transfer coefficients, the maximum temperature of Rectangular Arrangement was always the largest while that of Quadrilateral Arrangement was the smallest. With the increase of convective heat transfer coefficient, the temperature difference among the three showed a trend of increasing. With the increase of the thermal conductivity of PCM, the maximum temperature of the three gradually decreased with a decreasing rate. With the five different thermal conductivity of PCM, the average maximum temperature rise of Rectangular Arrangement was 105.31% and 106.02% of that of Quadrilateral Arrangement and Hexagonal Arrangement, and the temperature difference of latent heat storage stage of the three decreased. In the sensible heat stage, the temperature difference between Rectangular Arrangement and Hexagonal Arrangement was not affected, but the temperature difference of Quadrilateral Arrangement increased continuously. Considering the highest temperature and temperature difference, the Hexagonal Arrangement lithium battery pack had the best thermal performance with PCM thermal management.

【基金】 国家自然科学基金资助项目(51906228)
  • 【文献出处】 郑州大学学报(工学版) ,Journal of Zhengzhou University(Engineering Science) , 编辑部邮箱 ,2023年02期
  • 【分类号】TM912
  • 【网络出版时间】2023-02-16 16:26:00
  • 【下载频次】140
节点文献中: