节点文献

基于语义特征融合的作文自动评分方法

Automatic Scoring Method for Composition Based on Semantic Feature Fusion

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 袁航杨勇任鸽帕力旦·吐尔逊

【Author】 YUAN Hang;YANG Yong;REN Ge;Palidan Turson;School of Computer Science and Technology,XinJiang Normal University;

【通讯作者】 帕力旦·吐尔逊;

【机构】 新疆师范大学计算机科学技术学院

【摘要】 作文自动评分技术是一种利用机器学习进行自然语言处理的技术。目前,基于深度学习的端到端模型在作文自动评分领域已经广泛使用。然而,由于端到端模型难以获取不同特征之间的相关性,因此提出一种基于语义特征融合的作文自动评分方法(TSEF)。该方法主要分为特征提取和特征融合2个阶段。特征提取阶段,使用Bert模型对输入文本进行预训练,并使用多头注意力机制对输入文本进行自训练,以补充预训练的不足;特征融合阶段,使用交叉融合方法将获取的不同特征融合,以此获得更好性能的模型。在实验中,将TSEF与许多强基线进行比较,结果表明了本文方法的有效性和稳健性。

【Abstract】 Automatic composition scoring technology is a kind of natural language processing technology using machine learning.At present,end-to-end models based on deep learning have been widely used in the field of automatic essay scoring. However,because of the difficulty in obtaining correlations between different features in end-to-end models,Automatic Scoring Method for Composition Based on Semantic Feature Fusion(TSEF)has been proposed. This method is mainly divided into two stages: feature extraction and feature fusion. In the feature extraction stage,the Bert model is used to pre-train the input text,and a multihead-attention mechanism is used to self-train the input text to supplement the shortcomings of pre-training; In the feature fusion stage,cross fusion methods are used to fuse the different features obtained in order to obtain a better performance model. In the experiment,TSEF was compared with many strong baselines,and the results demonstrated the effectiveness and robustness of our method.

【基金】 新疆维吾尔自治区自然科学基金项目(2021D01B72);国家自然科学基金资助项目(62167008,62066044)
  • 【文献出处】 计算机与现代化 ,Computer and Modernization , 编辑部邮箱 ,2024年06期
  • 【分类号】TP391.1;TP18
  • 【下载频次】18
节点文献中: