节点文献
In掺杂SnO2纳米纤维用于快速高选择性氢气传感
In doped SnO2 nanofibers for rapid and highly selective hydrogen sensing
【摘要】 SnO2作为典型的n型金属氧化物半导体,具有优异的物化稳定性和灵敏度,在还原性气体传感方面具有极好的表现。通过静电纺丝法和煅烧工艺在600℃下制备了纯SnO2纳米纤维和(0.5%、1%、2%、3%、4%(原子分数))In掺杂SnO2纳米纤维。通过测试In掺杂SnO2气体传感器对氢气的气体响应,研究其气体传感性能,证明了In掺杂SnO2纳米纤维在气体传感方面具有潜在应用价值。在340℃时,1%(原子分数)的In掺杂SnO2纳米纤维对100×10-6氢气具有最高的响应(S=6.4)并且具有极快的响应/恢复行为(3.6 s/4.5 s)和高氢气选择性。结合FESEM、TEM、XRD、XPS分别对SnO2基纳米纤维的微观形貌以及尺寸,晶体结构以及元素组成进行了分析表征,以阐释验证其传感机理,并讨论了一种合理的传感机制。
【Abstract】 As a typical n-type metal oxide semiconductor, tin dioxide has excellent physicochemical stability and sensitivity, and has excellent performance in reducing gas sensing. Pure SnO2 nanofibers and(0.5at%, 1at%, 2at%, 3at% and 4at%) In doped SnO2 nanofibers were prepared by electrospinning and calcination at 600 ℃. By testing the gas response of In doped SnO2 gas sensors to hydrogen and studying their gas sensing performance, it has been proven that In doped SnO2 nanofibers have potential application value in gas sensing. At 340 ℃, 1at% In doped SnO2 nanofibers have the highest response to 100×10-6 hydrogen(S=6.4) and have extremely fast response/recovery behavior(3.6 s/4.5 s) and high hydrogen selectivity. The micromorphology, crystal size, crystal structure, and elemental composition of SnO2 based nanofibers were analyzed and characterized by combining with FESEM, TEM, XRD, and XPS to explain and verify their sensing mechanism, and a reasonable sensing mechanism was discussed.
【Key words】 electrospinning; indium doping; tin dioxide nanofibers; hydrogen; gas sensing;
- 【文献出处】 功能材料 ,Journal of Functional Materials , 编辑部邮箱 ,2023年08期
- 【分类号】TK91;TP212
- 【下载频次】11