节点文献

锂电池微通道液冷板散热性能分析

Thermal dissipation performance analysis of themicro-channel cold plates for lithium batteries

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 田少鹏唐豪龚振

【Author】 TIAN Shaopeng;TANG Hao;GONG Zhen;Key Laboratory of Aero-Engine Thermal Environment and Thermal Structure,Ministry of Industry and Information Technology, College of Energy and Power Engineering,Nanjing University of Aeronautics and Astronautics;

【通讯作者】 唐豪;

【机构】 南京航空航天大学能源与动力学院航空发动机热环境与热结构工业和信息化部重点实验室

【摘要】 为电动汽车动力电池系统设计了一种微通道液冷板结构,使用Fluent对所设计的液冷板进行仿真分析。研究了不同冷却液流量、流道宽度和高度对液冷板散热、均温及能耗性能的影响。结果表明,质量流量为4 g/s时,电池组最高温度和最大温差分别减小为28.6℃和2.1℃;质量流量高于4 g/s时,液冷板散热性能改善不明显,且能耗较高。流道宽度和高度的增加会降低液冷板散热性能,增加系统能耗,但其均温性能有所提升。强化传热结构的布置使液冷板散热性能进一步提升,较为显著地改善了电池组温度均匀性,扰流机构3可使电池组最高温度和最大温差分别减小0.79℃和0.19℃。研究成果可为后续液冷板结构设计优化提供指导。

【Abstract】 In order to meet the heat dissipation requirements of the electric vehicle battery system, this paper designs a micro-channel cold plate structure.Fluent is used to simulate and analyze the designed cold plate, and the effects of different coolant flow rate, channel width and height on heat dissipation, average temperature and energy consumption of the plate are compared and studied. The results indicate that when the mass flow rate is 4 g/s, the maximum battery pack temperature and maximum temperature difference decrease to 28.6 ℃ and 2.1 ℃ respectively. When the mass flow rate is higher than 4 g/s, heat dissipation performance of the cool plate improves slightly and energy consumption increasese normously. The increase of channel width and height reduces thermal dissipation performance and increases energy consumption of the system, but its temperature uniformity performance improves. The arrangement of the enhanced heat transfer structure further improves the thermal dissipation performance of the liquid cooling plate, which significantly improves the temperature uniformity of the battery pack. The turbulence mechanism 3 reduces the maximum temperature and maximum temperature difference of the battery pack by 0.79 ℃ and 0.19 ℃ respectively.The conclusions provide a theoretical direction for the structural design and optimization of liquid cooling plates.

【基金】 南京321计划重点项目(2013B03004)
  • 【文献出处】 重庆理工大学学报(自然科学) ,Journal of Chongqing University of Technology(Natural Science) , 编辑部邮箱 ,2023年03期
  • 【分类号】U469.72;TM912
  • 【下载频次】276
节点文献中: