节点文献
基于分布式发电的微网优化运行研究
The Micro-grid Optimization Based on Distributed Generation
【作者】 王玟苈;
【导师】 刘永生;
【作者基本信息】 上海电力学院 , 热能工程, 2017, 硕士
【摘要】 燃煤电厂发电量占中国总电量的60%以上,我国能源消费主要依赖于燃煤,这进一步加剧了环境污染,增加了温室气体排放。为了缓解环境污染与温室气体的排放,越来越多的研究者专注于可再生能源研究与应用。作为一种可再生能源,太阳能具有许多优点,如纯净、可再生、资源丰富。与其它可再生能源相比,太阳能能源是资源最为丰富的能源形式。为了促进太阳能产业的发展,中国政府出台了若干补贴政策,如太阳能建筑的屋顶计划。随着光伏板成本与光伏发电补贴的变化,需要进一步评估光伏产业的效益。系统经济效益可以通过净现值(NPV)和投资回收期(PP)来确定。在其生命周期中,光伏板与平衡系统(BOS)的生产、安装、运输与处置或回收系统需要大量的能源。全生命周期评估(LCA)可以对系统的能源回收进行评价。能源投资回收期(EPBT)和温室气体投资回收期(GPBT)可以对环境效益进行评价。本文利用PVSOL软件,探讨了不同功率、负荷、蓄电池容量、倾角下光伏系统的经济性与环境效益。并比较了两个不同光伏微网系统的性能、经济性与环境效益,具体如下:第一章介绍了微网的概念与发展现状、光伏产业的发展现状以及光伏系统经济环境效益的国内外研究现状。目前,针对中国光伏微网系统的经济性研究主要停留在光伏系统成本较高的时间段,且补贴主要考虑了初投资补贴,较少考虑发电量补贴。第二章研究光伏系统的数学模型、太阳能电池的输出特性、在不同温度不同辐照度条件下太阳能电池的输出特性、光伏系统最大功率点跟踪、蓄电池的模型以及微网负荷的数学模型。随着太阳能电池板电压的增加,输出功率先增加,达到最高点后急剧下降;随着光照强度的增大,输出功率增大,最大功率点升高;随着温度的升高,输出功率减小,最大功率点降低。第三章主要研究PVSOL软件数据的选取、不同倾角、不同发电功率、不同负荷类型下的光伏系统发电与能量分布性能、蓄电池容量计算、不同蓄电池容量下系统性能与不加蓄电池系统自给率的变化。当光伏板倾角为23o左右时,光伏系统发电量最高。自给率的趋势为工业负荷光伏系统大于商业负荷光伏系统大于居民用电负荷光伏系统。有蓄电池时的自给率较无蓄电池时的自给率高,且提高光伏板安装功率可提高系统自给率。第四章主要研究了光伏系统经济效益研究的公式与参数的确定、不同倾角、安装功率、负荷类型、极端负荷时系统的经济性,居民负荷与商业负荷相连时微网经济性能,以及光伏板清洗对系统经济性的影响。光伏系统最佳安装倾角为23o、24°。随着安装功率的增大,系统成本降低,一定大小与类型的负荷对应一个最佳安装功率。与一定功率光伏系统相连时,商业负荷系统与工业负荷系统的经济性大于居民负荷系统经济性,负荷的混合可提高系统经济性。系统清洗费用较高,但省掉的清洗费用会造成系统发电量的降低,使得发电收益降低。第五章主要研究了光伏系统环境效益分析公式、光伏系统EPBT与GPBT、其他环境效益、污染物排放的环境价值、天气类型分类以及天气预测程序。对于一个6k W系统,系统EPBT为3.88年,GPBT为4.03年。土地占用率为54.96%。用模式识别法对天气进行预测,预测准确率可以达到70%。第六章将两个实际光伏系统的性能、经济性、环境效益进行了计算与对比。3k W系统的投资回收期在12.4到14.4年之间,10k W系统在10.9到11.6年之间。3k W光伏系统一年所得环境收益总额为26963.47¥,10k W光伏系统一年所得环境效益为99352.42¥。第七章对上述内容进行了总结并对目前研究存在缺陷的地方进行了展望。提出可以在计算光伏系统经济性时考虑占地类型、PM2.5、不同种类蓄电池、与清洗频次等因素。
【Abstract】 Coal-fired power plants account for more than 60% of the total power generation of the energy construction of China.In China,energy consumption is mainly depends on coal-fired plants,which is the main reason for environmental pollution and greenhouse-gas.In order to ease environmental and green-house-gas problem,more and more researchers begin to focus on the renewable energy.As a kind of new energy,solar energy has many advantages such as pure,renewable,abundant etc.Furthermore,compared with other renewable energies,solar energy is the most abundant and inexhaustible.To promote the development of solar energy,several policies were proposed by Chinese government,such as the plan of solar roof of buildings.It’s necessary to evaluate economic benefits in the PV industry.The s net present value(NPV)and payback time(Pd)are used to determine profitability.In its life cycle,production,installation,transportation,and system disposal or recycling of PV modules and balance of system(BOS)require much energy.Lifecycle assessment(LCA)is perfect to evaluate the sustainability of PV system.Energy payback time(EPBT)and Greenhouse-gas payback time(GPBT)are institute ways to evaluate environment benefit.PVSOL software is used to investigate economic and environmental benefits of PV systems with different installation powers,load profiles,capacities of batteries,and incline angle of PV modules.The economic,environmental benefits and performance of two PV systems are illustrated and details are as follows:(1)The first chapter introduces the concept of micro-grid and the development status,the current development of photovoltaic industry and economic,environmental benefits of PV systems.Nowadays study on economical efficiency mainly focus on the former higher cost period,and the subside mainly considered investment subside,electricity output subside is less considered(2)The second chapter introduces photovoltaic system,output characteristics,mathematical model of photovoltaic cell,output characteristics under different temperature and irradiance,photovoltaic maximum power point tracking system,as well as battery model and mathematical model of load.With the increament of voltage of PV modules,the electricity output rise gradually and drop sharply after reached the highest point.With the increament of illumination intensity,the maximum power increases,and with the increament of temperature,the maximum power decreases.(3)The third chapter mainly studies PVSOL software data selection,Energy distribution performance of PV systems with different angle,different instillation power,different load profiles,and PV systems under different battery capacity.The chapter also studies self-sufficiency rate of system performance with or without battery system changes.When the tilt angles are around 23o,the output power of PV modules reach highest.The self-sufficiency rate of PV systems with industrial load is higher than commercial load,and the self-sufficiency rate of PV systems with residential load is the lowest.The self sufficiency rate of PV systems with batteries are higher than PV systems without batteries,and the increament of installation power can increase self-sufficiency rate of the PV system.(4)The fourth chapter mainly studies the formula and parameters of economic benefits evaluation of PV systems with different angle,installation power,load profiles,even load with extreme characterload of system.The chapter also studies economic performance of micro-grid with connected residential and commercial load profiles,and economic influence of cleaning photovoltaic panels.The best installation tilt angles are 23o、24o.With the increasement of installation power,the cost of each installation power decreases.A certain load profile and power correspond with an fixed best installation power.When combined with PV systems under the same installation power,the economic benefits of industrial load PV system and commercial load PV system are higher than residential load PV system.The mixture of different load profiles can improve system economic benefits.The cleaning cost of PV systems is high,without which the output of PV system will decrease,and earnings will drop highly.(5)The fifth chapter mainly studies the formula of environment benefits of PV systems.EPBT,GPBT,the pollutants of environmental value,and other environmental benefits are analyzed.The bottom part studies weather type classification and weather forecast program.For a 6kW PV system,the EPBT is 3.88 years and GPBT is 4.03 years.The occupation rate of land is 54.96%.When predict the weather with patter recognition method,the accuracy rate can reach to 70%.(6)Chapter six introduces performance,economical and environmental benefits of two actual PV systems.The payback period of 3kW PV system are between 12.4 to 14.4 years,the payback period of 10 kW PV system are between 10.9 to 11.6 years.The overall environmental benefit of 3kW PV system is 26963.47¥,and the overall environmental benefit of 10 kW PV system is 99352.42¥.(7)Chapter 7 is the summary of the above content and perspective according to the present research are prospected.Differnet land types,PM2.5,different kinds of batteries,and frequency of cleaning can be considered in further research.
【Key words】 Photovoltaic systems; Economic benefits; Environmental benefits; Performance ratio;