节点文献
射影簇的双有理收缩态射的结构
Structure of Birational Contractions on Projective Varieties
【作者】 余金杯;
【导师】 赵逸才;
【作者基本信息】 暨南大学 , 基础数学, 2013, 硕士
【摘要】 设X是n维非奇异射影簇, L是X上的丰富线丛,KX是X的典范丛, f:X→Y是以KX+mL为支撑除子的双有理收缩态射(m≧1), F是f的任一纤维.文中证明了如果dim F=m+1,那么F的每个不可约分支同构于射影空间Pm+1或者超二次曲面Qm+1.
【Abstract】 Let X be a nonsingular projective variety of dimension n, L be an ampleline bundle over X andKX be the canonical bundle over X. Let f:X→Ybethe birational contraction from X to variety Y. AndKX+mLbe thesupporting divisor of the former morphism f:X→Yfor some positiveinteger m≧1. F is a generic fiber of f. If dim F=m+1, then eachirreducible component of F is isomorphic to projective space Pm+1 orhyperquadric surface Qm+1.
【关键词】 射影簇;
丰富线丛;
收缩态射;
纤维;
【Key words】 Projective variety; ample line bundle; contraction morphism; fiber;
【Key words】 Projective variety; ample line bundle; contraction morphism; fiber;