节点文献

多目标海洋捕食者算法的污水处理优化控制

Optimal Control of Sewage Treatment Based on Multi-objective Marine Predator Algorithm

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 崔心惠李文萱朱山川张祝威

【Author】 CUI Xinhui;LI Wenxuan;ZHU Shanchuan;ZHANG Zhuwei;College of Electrical Engineering Chuzhou Polytechnic;Nanjing Dianyan Electric Power Automation Co., Ltd;

【机构】 滁州职业技术学院电气工程学院南京电研电力自动化股份有限公司

【摘要】 针对污水处理过程中能耗和出水水质相制约的问题,提出一种多目标海洋捕食者算法(MOMPA)的污水处理优化控制方法 .通过分析污水处理过程机理找出目标函数与可控变量之间的关系,构建能耗和出水水质模型,在标准海洋捕食者算法的本身机制上引入贪婪策略保证最佳非支配解不丢失,在拥挤度计算中将更优解与存档中的最优解进行更替使得Pareto前沿分布更为均匀,提高解的覆盖率以及算法的收敛性.用CEC2019多模态多目标基准函数评估算法的优化控制性能,并将算法应用于基准仿真平台(BSM1),证明算法能有效提升出水水质且运行能耗降低显著,达到预期优化目的.

【Abstract】 Aiming at the restriction of energy consumption and effluent quality in sewage treatment process, a multi-objective marine predator algorithm(MOMPA) for optimal control of sewage treatment was proposed. Firstly, by analyzing the mechanism of sewage treatment process, the relationship between objective function and controllable variables was found out, and the energy consumption and effluent quality model were constructed; Then, the greedy strategy was introduced into the mechanism of the standard ocean predator algorithm to ensure that the best non dominated solution was not lost. In the congestion calculation, the better solution was replaced with the optimal solution in the archive, so as to make the Pareto front distribution more uniform and improve the coverage of the solution and the convergence of the algorithm. Finally, CEC2019 multi-modal multi-objective benchmark function was used to evaluate the optimal control performance of the algorithm, and the proposed MOMPA was applied to the benchmark simulation platform(BSM1). It is verified that the algorithm can effectively improve the effluent quality requirements and significantly reduce the operation energy consumption, so as to achieve the expected optimization purpose.

【基金】 安徽省科技攻关重大项目(1301041023);安徽省高校自然科学研究重点项目(KJ2019A0646);2020年校级科研一般项目(YJY-2020-25)
  • 【文献出处】 宜宾学院学报 ,Journal of Yibin University , 编辑部邮箱 ,2022年06期
  • 【分类号】X703;TP18
  • 【网络出版时间】2022-01-10 14:39:00
  • 【下载频次】184
节点文献中: 

本文链接的文献网络图示:

本文的引文网络