节点文献
单位圆盘上几种Toeplitz算子的数值域
Numerical Domains of Several Toeplitz Operators on the Unit Disk
【摘要】 线性算子的凸性对其数值域而言是个极其重要的性质.二次数值域提供了估算算子特征值的方法,更精确地刻画了谱的分布状态.本文得到了单位圆盘上Hardy-Toeplitz算子、Bergman-Toeplitz算子以及对偶截断Toeplitz算子的数值域的结果,并用二次数值域的方法将这些算子的数值域与算子的符号联系了起来.
【Abstract】 Convexity is a very important property for the numerical domain of linear operators. The binary number field provides a method to estimate the eigenvalues of the operator and to characterize the distribution state of the spectrum more precisely. In this paper, we obtain results on the numerical domains of Hardy-Toeplitz, Bergman-Toeplitz, and pairwise truncated Toeplitz operators on the unit disk, and we relate the numerical domains of these operators to the symbols of the operators, where the method of the dual number field is used.
【关键词】 Toeplitz算子;
数值域;
二次数值域;
对偶截断Toeplitz算子;
【Key words】 Toeplitz operator; numerical domain; quadratic numerical domain; dual truncated Toeplitz operator;
【Key words】 Toeplitz operator; numerical domain; quadratic numerical domain; dual truncated Toeplitz operator;
【基金】 国家自然科学基金项目(11871122,12101092);重庆市自然科学基金项目(CSTB2022NSCQ-MSX1045,cstc2020jcyj-msxmX0318);重庆市教委科学技术研究项目(KJQN202100822)
- 【文献出处】 西南师范大学学报(自然科学版) ,Journal of Southwest China Normal University(Natural Science Edition) , 编辑部邮箱 ,2023年04期
- 【分类号】O177.1
- 【下载频次】8