节点文献
“数学深度学习”研究:“现状”“问题”及“展望”——基于CNKI平台研究文献的分析
“Deep Learning in Mathematics” Research: Current Situation, Problems and Prospects——Analysis of Research Literature Based on CNKI
【摘要】 运用CNKI可视化计量统计法、CiteSpace软件知识图谱分析法和内容分析法,对近年来中小学数学深度学习的研究文献进行分析,发现已有研究存在的问题有:第一,研究整体分布不均,水平层次不高;第二,数学深度学习的理论研究缺乏系统性;第三,数学深度学习的实践路径研究缺乏深度;第四,数学深度学习的资源开发研究缺乏创新性.基于此,未来数学深度学习的研究要建立数学深度学习研究机制,促使数学深度学习研究常态化发展;建构数学深度学习理论体系,促进数学深度学习系统化发展;探寻数学深度学习实践着力点,促进数学深度学习深化发展;开发数学深度学习资源,促进数学深度学习创新化发展.
【Abstract】 Using CNKI visual quantitative statistics, Cite Space software knowledge graph analysis and content analysis, this paper analyzes the research literature on deep learning in primary and secondary schools in recent years. The existing problems are found as follows. Firstly, the overall distribution of the research is uneven and the level of the research is not high. Secondly, the theoretical research of mathematical deep learning is not systematic. Thirdly, the research on the practical path of mathematical deep learning lacks depth. Fourthly, the research on resource development of mathematical deep learning lacks innovation. Based on this, in the future, the research on mathematical deep learning should establish a mathematical deep learning research mechanism to promote the normal development of mathematical deep learning research. Constructing a theoretical system of mathematical deep learning to promote the systematic development of mathematical deep learning; exploring the practical focus of mathematical deep learning to promote the development of mathematical deep learning; and developing mathematical deep learning resources to promote the innovative development of mathematical deep learning.
【Key words】 mathematics deep learning; content analysis; problems; prospects;
- 【文献出处】 数学教育学报 ,Journal of Mathematics Education , 编辑部邮箱 ,2023年03期
- 【分类号】G353.1;G633.6
- 【下载频次】547