节点文献

基于Yolo算法的交通锥标颜色检测

Traffic Cone Color Detection Based on Yolo Algorithm

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 赵梓杉秦玉英李刚衣明悦

【Author】 ZHAO Zishan;QIN Yuying;LI Gang;YI Mingyue;College of Automobile and Traffic Engineering, Liaoning University of Technology;

【机构】 辽宁工业大学汽车与交通工程学院

【摘要】 为了解决中国大学生无人驾驶方程式大赛的赛车检测交通锥标速度较慢和鲁棒性差的问题,文章采用自制数据集,提出一种使用自制数据集的Yolo实时目标检测方法。针对交通锥标较为细长、尺寸小的特点,Yolo使用K-means聚类算法对数据集中的真值进行聚类,选取合适的边界框数量,使目标检测算法融合本数据集的类别并实现锥桶检测以及三种颜色的分类。实验结果表明,在不同的外界环境中,Yolov5网络的交通锥标颜色分类检测模型的检测准确率高、鲁棒性好、计算速度快。在少量数据的情况下召回率达到88.84%,准确率达到86.87%,比Yolov3算法提高了36.78%,比原始算法提高了44.8%,检测速度(34f/s)满足赛事需求。

【Abstract】 In order to solve the problem of slow speed and poor robustness of formula student China traffic cone mark detection, this paper proposes a real-time target detection method of Yolo using self-made data set. Aiming at the characteristics of traffic cone sign is relatively thin and small in size,K-means clustering algorithm is used to cluster the true value of data set, and the appropriate number of boundary boxes is selected to make the target detection algorithm integrate the classification of this data set and realize cone detection and classification of three colors. The experimental results show that the traffic cone color classification detection model of Yolov5 network in different external environment, the detection accuracy is high. The algorithm is robust and fast to calculate. In the case of a small amount of data, the recall rate reaches 88.84%, the accuracy rate reaches 86.87%, 36.78%higher than Yolov3 algorithm, 44.8% higher than the original algorithm, and the detection speed(34f/s) meets the requirements of the event.

【基金】 辽宁省科技厅重大研发计划(207106020);辽宁省教育厅项目(JJL201915411);国家自然科学基金(51605213);辽宁省高等学校国(境)外培养项目(2018LNGXGJWPY-YB014)
  • 【文献出处】 汽车实用技术 ,Automobile Applied Technology , 编辑部邮箱 ,2022年18期
  • 【分类号】U463.6;TP391.41
  • 【下载频次】200
节点文献中: 

本文链接的文献网络图示:

本文的引文网络