节点文献

基于概率耦合神经元集群同步活动

Synchronization of neuronal population under probabilistic coupling

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 丁志远焦贤发

【Author】 DING Zhiyuan;JIAO Xianfa;School of Mathematics, Hefei University of Technology;

【机构】 合肥工业大学数学学院

【摘要】 文章考虑神经元突触之间信息传递具有动态随机性,建立了连续型概率耦合函数作用下的全局耦合神经振子集群的相位演化模型,引入数密度描述神经振子集群的同步状态,进而推导出了平均数密度的动态演化方程。数值模拟表明,神经振子集群在概率耦合机制下神经振子的同步活动加强;刺激强度越大,神经振子集群的同步程度越高;当系统特征频率接近刺激频率时,神经振子集群的数密度呈现周期性振荡行为。

【Abstract】 Considering the dynamic randomness of information transfer between the synapses of neurons, a phase evolution model of globally coupled neuronal oscillator population under the action of continuous probabilistic coupling function is established. The synchronous state is described by introducing number density, and the dynamic evolution equation of average number density is derived. The results of numerical simulations indicate that the synchronic activity of the neural oscillator is strengthened under the probabilistic coupling mechanism. Stimulus with stronger intensity leads to higher synchronization degree. If the stimulus frequency is close to the population characteristic frequency, neuronal population exhibits periodic oscillation behavior.

【基金】 国家自然科学基金资助项目(11172086;11232005)
  • 【文献出处】 合肥工业大学学报(自然科学版) ,Journal of Hefei University of Technology(Natural Science) , 编辑部邮箱 ,2020年01期
  • 【分类号】O211;R338
  • 【下载频次】31
节点文献中: 

本文链接的文献网络图示:

本文的引文网络