节点文献

Sylvester四元数矩阵方程Hankel解的半张量积方法

Semi-tensor Product Method for Solving Least Square Hankel Solutions of Sylvester Quaternion Matrix Equation

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 闫立梅赵琳琳崔连香刘莉刘耀斌

【Author】 YAN Li-mei;ZHAO Lin-lin;CUI Lian-xiang;LIU Li;LIU Yao-bin;School of Mathematics and Big Data, Dezhou University;

【机构】 德州学院数学与大数据学院

【摘要】 本文研究了Sylvester四元数矩阵方程A1X1B1+A2X2B2=C的最小二乘Hankel解的问题。将四元数矩阵的实向量表示方法和矩阵的半张量积方法联合起来,将所研究的四元数问题转化为实矩阵方程。根据Hankel矩阵的结构特征,提取了矩阵中的有效元素,构造了新的解向量,降低了所研究问题的复杂度。得到了方程存在Hankel解的条件,并给出Hankel解的一般形式。最后,给出了求解所讨论问题的算法。

【Abstract】 Least square Hankel solutions of the Sylvester quaternion matrix equation A1X1B1+A2X2B2=C are studied. By means of real vector representation of quaternion matrix and semi-sensor product theory, the quaternion matrix equation is transformed into its equivalent real matrix equation. Considered the structural characteristics of Hankel matrix, independent elements of the solution matrix are extracted to reconstruct a new solution vector, thus the computational complexity of the problem is reduced. The existing conditions of Hankel solutions of the equation are obtained and the general solutions of the equation are given. Finally, the algorithm finding the solution of the discussed problem is provided.

  • 【文献出处】 德州学院学报 ,Journal of Dezhou University , 编辑部邮箱 ,2023年02期
  • 【分类号】O151.21
  • 【下载频次】8
节点文献中: 

本文链接的文献网络图示:

本文的引文网络