节点文献
具有输入死区的分数阶Victor-Carmen系统的有限时间同步(英文)
Finite-time Synchronization of Fractional-order Victor-Carmen Systems with Dead-zone Input
【摘要】 有限时间控制能获得更快的收敛速度,是一种有效的控制策略.混沌系统有限时间同步明显优于渐近同步.本文研究了具有输入死区的分数阶Victor-Carmen系统的有限时间同步问题,为了使Victor-Carmen系统在给定时间内收敛到平衡点,提出了一种自适应滑模控制策略.设计了一种非奇异分数阶滑模面,为了将同步误差系统的轨迹驱动到滑模面上引入了自适应滑模控制律,实现了主从系统的混沌同步.通过算例说明了所提出的有限时间控制器的有效性和适用性,并验证了本文的理论结果.
【Abstract】 The finite-time control method is an effective technique to obtain fast convergence in a control system. It is more advantageous to synchronize chaotic systems within a finite time rather than merely asymptotically. This paper is concerned with the finite-time synchronization problem of fractional-order Victor-Carmen system with dead-zone input. To ensure that Victor-Carmen system states converge to the equilibrium point in a given finite time, an adaptive sliding mode control strategy is proposed. A non-singular fractional-order sliding surface is designed and an adaptive sliding mode control law is introduced to force the trajectory of the synchronization error systems onto the sliding surface, chaos synchronization is thus achieved for master-slave systems. The illustrative examples are presented to illustrate the effectiveness and applicability of the proposed finite-time controller and to validate the theoretical results of the paper.
【Key words】 fractional order; Victor-Carmen system; sliding mode control; chaos synchronization; dead-zone input; finite-time control;
- 【文献出处】 工程数学学报 ,Chinese Journal of Engineering Mathematics , 编辑部邮箱 ,2020年06期
- 【分类号】O231
- 【下载频次】12